tf.TFRecordReader()可能会弃用,官方推荐用tf.data读取TFRecord,用起来也相对方便。实现代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import tensorflow as tf
import random
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

img_size = 224

def parse_exmp(serial_exmp):
features = tf.parse_single_example(serial_exmp, features={
'label': tf.FixedLenFeature([], tf.int64),
'image_raw': tf.FixedLenFeature([], tf.string)
})
label = tf.cast(features['label'], tf.int32)
img = tf.decode_raw(features['image_raw'], tf.uint8)

# print(img.shape)
img = tf.reshape(img, [224, 224, 3])
# 归一化处理
img = tf.image.convert_image_dtype(img, dtype=tf.uint8)
# img = tf.cast(img, tf.float32) / 255.0
# label = tf.one_hot(label, 8)
return img, label


# TFrecord文件路径
train_list = ['./images/test/train-0.tfrecords']

train_set = tf.data.TFRecordDataset(train_list)
train_set = train_set.map(parse_exmp).repeat().batch(1).shuffle(buffer_size=50)
train_iterator = train_set.make_one_shot_iterator()
images_batch, labels_batch = train_iterator.get_next()

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

for n in range(100):
images, labels = sess.run([images_batch, labels_batch])
b_image = Image.fromarray(images[0])
print(labels[0])
plt.imshow(b_image)
# plt.axis('off')
plt.show()
# print(labels)