使用MXNet提供的Gluon接口可以更加方便地实现Softmax回归

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gluonbook as gb
from mxnet import gluon, init, autograd
from mxnet.gluon import loss as gloss, nn

# 获取数据
batch_size = 256
train_iter, test_iter = gb.load_data_fashion_mnist(batch_size)

# 定义和初始化模型
net = nn.Sequential()
net.add(nn.Dense(10))
# 使用N(0,1)初始化模型权重参数
net.initialize(init.Normal(sigma=0.01))

# softmax和交叉熵损失函数
loss = gloss.SoftmaxCrossEntropyLoss()

# 定义优化算法
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})


# 计算分类准确率
def accuracy(y_hat, y):
# y_hat.argmax(axis=1) 返回每行中最大元素的索引
# y中对应的即是分类的索引值
# == 获得非0即1的数
# 求平均值 得到准确率
return (y_hat.argmax(axis=1) == y.astype('float32')).mean().asscalar()

# 评估模型
# 对每个数据块准确率求和 算平均值
def evaluate_accuracy(data_iter, net):
acc = 0
for X, y in data_iter:
acc += accuracy(net(X), y)
return acc / len(data_iter)

# 训练模型
def train(net, train_iter, test_iter, loss, num_epochs, batch_size, params=None, lr=None, trainer=None):
for epoch in range(num_epochs):
train_l_sum = 0
train_acc_sum = 0

for X, y in train_iter:
with autograd.record():
y_hat = net(X)
l = loss(y_hat, y)

l.backward()

if trainer is None:
gb.sgd(params, lr, batch_size)
else:
trainer.step(batch_size)

train_l_sum += l.mean().asscalar()
train_acc_sum += accuracy(y_hat, y)

test_acc = evaluate_accuracy(test_iter, net)

print("epoch %d, loss %.4f, train_acc %.3f, test_acc %.3f" % (epoch + 1, train_l_sum / len(train_iter), train_acc_sum / len(train_iter), test_acc))


num_epochs = 5
lr = 0.1
train(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, trainer)