求梯度实例
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
| from mxnet import autograd, nd
x = nd.arange(4).reshape(4,1) print(x)
x.attach_grad()
with autograd.record(): y = 2 * nd.dot(x.T, x)
y.backward()
assert (x.grad - 4 * x).norm().asscalar() == 0
print(x.grad)
|
训练模式和预测模式
调用record函数后,mxnet会记录并计算梯度。此外还将运行模式从预测模式转为训练模式。
1 2 3 4 5
| from mxnet import autograd
print(autograd.is_training()) with autograd.record(): print(autograd.is_training())
|
对python控制流求梯度
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
| from mxnet import autograd, nd
def f(a): b = a * 2 while b.norm().asscalar() < 1000: b = b * 2 if b.sum().asscalar() > 0: c = b else: c = 100 * b return c
a = nd.random.normal(shape=1)
a.attach_grad()
with autograd.record(): c = f(a)
c.backward() print(a.grad == c / a)
|
上面定义的函数$f$。给定任意的a,其输出必然是$f(a) = x * a$的形式,其中标量西施x的值取决于输入a,由于$c = f(a)$有段a的梯度为x,且值为c/a。